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TECHNICAL NOTE 35753

PROBABILITY AND FREQUENCY CHARACTERISTICS OF
SOME FLIGHT BUFFET LOADS

By Wilber.B. Huston and T. H. Skopinski
SUMMARY

The frequency characteristics and statistical properties of the
buffet loads measured on the unswept wing and tail of a fighter airplane
have been studied in the stall and in the shock regime. The results
Indicate thet the wing loads in buffeting can be treated as the Gaussien
response of & simple elastic system. The tall loeds sppear to represent
& more camplicated process.

INTRODUCTION

The fluctuating loads imposed on an aircraft structure in the stalled
flight condition have been studled extensively since their potentially
destructive cheracter wes revealed. in 1930 (ref. 1). Although first
interest was centered on "tail buffeting,” in which loads are induced on
the tall by flow disturbances in the weke which heve their origin in the
separated flow over the stalled wing, it was soon realized that this
induced or secondsry buffeting was only part of a larger class of sepa-
ration phenomens and that the separated flow over the wing could also
produce apprecieble loads in the airpleme structure. The term "buffeting"
is now generally used to include this primary buffeting as well as the
secondary or induced type. As the speed of alrplsnes has been extended.
into the transonic and supersonic ranges, the term buffeting has also
been spplied when the separation is associated with shock formation or
other camplex flow patterns in the higher speed ranges. Buffeting is
also used to characterize both the aerodynsmic excitation and the result-
ent structural loads.

In attempts at quantitative treatment of buffet loeds, a mesjor diffi-
culty is found in the random cheracter of the fluctuations » Which has led
to uncertainty in the applicastion of any simple numericsl measure (such
as the frequently used half of the pesk~to-peak value). This randomness
has been recognized by many workers, but the possible applicebility of
the analytical and experimental tools developed in the study of random
processes was first pointed out in 1951 (ref. 2).. Some experimental
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evidence for this applicability was provided by the anelysis of refer-
ence 3, where the peak values of wing and tail root structural shear

measured in stalls of varying duration at various speeds- and altitudes
were found to correlste well with certain parameters suggested by con-
sideration of the linear response of an aerodynsmicelly dsmped elastic
system to an serodynsmic excitetion which is a Geusslian random process.

The Geussian random process, which is discussed in more detail in
the body of the paper and in appendix A, 1s a special type of randaom
process about which much more is known than any other type (refs. L4
to 7). OFf particular interest is the fact that the statistical proper-
ties of such a process are simply related to its frequency characteristics
as represented by the power spectrum. A primary purpose of the present
study, therefore, is to examine the character of the wing and tail loads
in buffeting in order to determine how well buffet loads epproximste a
Gaussian randam process. For this purpose a number of characteristics
of the load +time histories are evaluated and campared with what would
be expected for a Gaussian process. In addition to the power spectrum,
the characteristics examined are the probability distribution of the
loads, the frequency of zero crossings, end the probebility distribution
of the peak loads. These properties were chosen because they could be
readlly evaluated and are of interest in commection with the study of
fatigue.

Inssmich as buffeting was encountered during meneuvering flight, the
time historlies of measured wing end tall loeds contained large-smplitude
components at low frequencies in addition tq the more rapid load fluctua-
tions of buffeting. A brief account of the numerical methods utilized
for the study of buffeting under these conditions is included.

SYMBOLS
Cy alrplane normal-force coefficilent
£ frequéncy, cps
£y folding frequency, -2-]2%-, cps
fo average number of crossings per second of the zero axis with
positive (or negetive) slope
fp average mumber of positive ( or nega:bive) peaks per second

ky,k, constents of the pesk probebility distribution (defined in
egs- (9) and (10))

LY
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2 = g I

P(y)

g
o(r)

LJ

i}
I

buffet component of root structural shear loed, 1b
largest value of I 1in & specified time interval, 1b
Mach number

number in sample

average number of pesks per second which exceed a gliven value
of L

probebility that a value of the random varieble y will be
exceeded

penetration (beyond the buffet boundary), -_CNEB-
dynsmic pressure, lb/sq £t

time, sec

a specified time interval, sec

a random varisble

standard varisble, L;I.

angle of attack, deg
standard deviation

power spectral density function of buffet load, lb2/ cps

row mebtrix
column mstrix

rectangular metrix

Subscripts:

BB buffet boundary

N relaeting to normal probebility functions
P relating to peak probability functions
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t tall
w wing
max maximum

Time differentistion is denoted by dots (as ¥, ¥, etc.)
SCOPE AND GENERAL CHARACTERISTICS OF FLIGHT BUFFET-LOAD DATA

The flight data analyzed in the present investigation were acquired
in the course of the flight investigation of the wing and tall buffet
loads reported in reference 3. The airplene, flight instrumentation,
and dsta-reduction procedures are described in reference 5. Some char-
acteristic structural vibration frequencies of the airplene are listed
in teble I. The present study, which deals with time histories of the
wing snd taill root structural shear, required a more detailed evaluation
of the strain-gage records than wes required for reference 3, which deals
with meximm values (one-half of the largest peak-to-pesk fluctuation)
encountered in a run. The measured root structurel shear in buffeting
was composed of two components: a maneuvering load (slow variations
over a range of 20,000 pounds in the case of the wing) end a superimposed
buffet loed (comparatively repid fluctuations of as much as 3,900 pounds).
For study of the statistical properties of the buffet loads, separation
of the buffet component from the measured values of load was required.
This separation was accomplished by means of a mumerical filtering tech-
nique which, since it may be of use in the study of other flight buffet
measurements, is described in appendix B.

Maneuvers Investigated

Of the 194 runs reported in reference 3, six were selected for the
detailed evaluation required in the present investligation, three in the
stall regime and three in the shock regime. Four runs were cbtained
with the basic airplane and two with the modified airplene, that is, the
alrplene with 100-pound weights added internally near the wing tips in
order to lower the natural frequency of the wing in the fundemental
bending mode from 11.7 to 9.3 cps. The results for two of the six rums
are reported herein, since they were found to be typical. Run A is a
gradual pull-up to the stall with the modified airplsne at a Mach number
of 0.46; run B, with the basic configuration, is & gradual pull-up into
the buffet region at a Mach mmber of O.Th. The variation of airplane
normal-force coefficient and Mach mmber in reletion to the buffet bound-
ary of the airplane is shown for these runs in figure 1. ThHe arrows in
figure 1 represent flight conditions for the onset and end of buffeting
as evidenced by the accelerometer at the center of gravity.

-
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Time History of Flight Condition and Buffet Imtensity

The time variations of alrplane normal-force coefficient, Mach
number, end buffet intemnsity for runs A and B are shown in figure 2.
Angle-of-stteck values are also given for run A. The measure of buffet
intensity, denoted by the symbol o(t), is the root-mesn-square value
of the buffeting shear in a 1/2-second period; that is,

1/2
t+Z

o)=L f % 12(t) at (1)

t -

i

where T is teken as a period of 1/2 second. This value was coamputed

at successive overlapping 2/10-second intervals and each value is plotted
in figure 3 at the time corresponding to the middle of the l/2-seconﬂ.
period. A l/2-second period, involving the root meen square of 50 meas-
ured values, was selected after some trial as being long enough to give
a sample of reasonsble stebility in a statistical sense, yet short enough
to reflect changes in level associated with changes in flight condition.

Stall regime, run A.~ For readier comparison. of the buffet intensity
wilth eirplane operating condition in the stall, the data of figure 2(a)
have been replotted in figures 3(a) and (b) as o(t) against both Cy

and ao. In these plots the square symbols are used to distinguish the
data sppliceble to the stall recovery (t > 5 .seconds in figure 2(a)).
No particular trend of wing or tall buffet load with Cy is evident in

figure 5, or of wing buffet load with- «, but a possible correlation of
tall buffet load with o 1s indicated. In an attempt to decide on an
objJective basis whether the scatter shown in figure 3 was larger than
could reasonably be ascribed to chance, and thus might Indicate the
presence of same systemetic factor in the data, a standard statistical
test (Bartlett's, ref. 8) for homogeneity was applied to the values

of o(t). For the wing loaeds (fig. 2(a)) this test suggests that the
scatter shown is within the 1imits to be expected on the basis of chance,
but the scatter for the tall loads is greater than would be expected on
the basis of chence alone. This finding, together with the spparent
correletion of tall load with le of attack, tends to confirm the
indications of reference 3 that "one or more edditional parsameters mey
exist which are important in detennin:Ln% tall loads but which are not
disclosed by the present investigation.

Shock regime, run B.- In figure 2(b) the time histories of o show
marked similarities to the time history of Cpy. These values of buffet

intensity are compeared directly with Cy in figure ll-(a.). Both wing and
tail loads increase sharply with values of Cy sgbove sbout 0.46. The
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trend sppears to be well represented by the least-squares straight lines
shown which fit the wing and tall loads with standard errors of estimate
of 36 and 18 pounds, respectively. In fitting these lines, the data
represented by flegged symbols were cmitted. These data apply to the
rapid return to level flight (t > 4t seconds) in run B, where conditions
were chenging too rapidly to be represented adequetely by 1/2-second
averages.

Because of extraneous factors, the values of ¢ in figure 4(a) do
not go to zero. For the wing data, the random errors associated with
record reeding, combined with strain-gage sensitivity (16,000 1b/in.),
hed a standard deviation of sbout 60 pounds. For the tall loads, reading
accuracy was not a factor, but a periodic component 1s alweys present
in the tail-load record at the propeller blaede passage fregquency, 86 cps.
This caomponent of the tail loasd in level flight In run B has a root-mean-
square velue of about 25 pounis, and an exemination of the original
records shows that 1t increases samewhat with 1ift. These effects tend
to obscure the detell in resolving low levels of buffeting, but they are
Judged not to affect apprecisbly the larger values of o‘('bs.

Although it appears that a plot of the variation of buffet intensity
with Cy at a given Mach number could be used to determlne the value

of Cy at which buffeting starts, and thus to find a point on the buffet

boundery, application of this concept is camplicated in the present
instance by both the decrease in Mach number during the run and by the
extraneous effects mentioned previocusly which have obscured the buffet
loads of low magnitude. It does appear, however, that buffeting is pres~
ent at values of Cy greater than 0.46, & value which compares favorably

with the condition for onset of buffeting indicated in figure 1.

In order to correlate the variations of buffet load with both Cy

and Mach pumber in the shock regime, a penetration parameter P was
defined in reference 5. A given value of Cy at a given Mach number,

which penetrated the buffet region by an increment Cyx - CNBB s Was
expressed as & ratio in terms of the maximum possible penetration

Cnax = Oy’

L (2)
Mo = "o

This formula tekes care of variations of both Cy and Mach mmber. The

buffet loads of run B are plotted against P in figure 4(b). The varia-
tion with P eppears to be linear. Least-squares straight lines through

P
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the origin fit the wikg end taill load dete with standerd errors of esti-
mete of 32 pounds snd 14 pounds, respectively. As beforc, 3I=ta repre-
sented by the flagged symbols were omitted in f£fitting the least-squares
straight lines. .

ANATYSTS AND DISCUSSION

Method of Ansalysis

As discussed in eppendix A, assessment of the Gaussian or non-
Gaussian character of the measured f£light buffet loads in terms of the
usual formel definition of Gaussian random processes would involve a
set of related probsbility distributions, most of which would be diffi-
cult to determine or to visualize. In the present paper, only the sim-
plest of these distributions 1s used directly for comparison with the
measured loads. The other propertles to be examined follow from the
nature of these probability distributions, but are determined from the
power spectrum of the loads. The power spectrum &(f) may be regarded

88 a frequency esnsalysis of the mean-square value of the load fluctuations.

The equetions for the properties used -specifically in the present study
follow.

The standard deviation o or root-mean-square value 1s determined
by the areas under the power spectrum as

02=j;°°¢(f)af | (3)

The number of crossings per second of the zero axis with positive
(or negative) slope is en average frequency fo where

j(; ) £20(£) af

j: a(z) as

The total number of positive (or negative) pesks per second is £,

where P
o]
f f%(f) af
s 240

P =
f £2¢(£) ar
0

2 _
fg =

(1)

(5)
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The probaebility distributions of the loads and of the load peaks
are most convenlently expressed in terms of the so-called stendard

varisble z = % which expresses the size of a given value of load L

in relation to the stenderd deviation o. The probability that L 1lies

Wi(z) an

between L &and L + dL 1is 5 » Where

Wi (z) = L e"za/2 (6)

(=3

is the normal frequency distribution of statistics or the "normal curve
of error." The probebility of exceeding, that is, Py(L), is expressed

by an integral of equation (6) as the normal probebility distribution
function

Py (z) =L=L/d W,(z) az (1)

a relation which may be evaluated by use of standard statistical tebles.

The probebility thet a peak load will exceed a given value L, that
is, Pp(L), is expressed by & peek probsbility distribution function

Pp(z) where

£ _,2
p(z) = By(E) + 22 ¢ /2[1 - PN(-]-:E'Q—):I (8)
and the constents k; end k, are functions of the ratio fo /fp 3
Ky = Vl - (£o/%0)? (9)
k
= (10)
2 fo/tp

Equetion (8) is illustrated in figure 5(a) for various velues of
the frequency ratio £, /:E'P. For the limiting case £, /fP = 0, the peak

probability distribution PP(z) reduces to the normal distribution

(eq- (7)). This figure has been prepared on normal-probebility peper -
peper on which the scales are so adjusted that the normel probebility
distribution gives a straight-line plot and which thus serves to illus-
trate the relationship between the normal and peak probebllity
distributions.
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In a Gaussian random process, the first member of the aforementioned
set of related probabilility distributions can be representied by the normal
probebility distribution, equation (7). The Gaussian character of the
buffet loads in the present paper is, therefore, first assessed by com-
pering equation (7) with the probebility distribution of the meesured
load time histories taken from the flight records. In eddition, the
distribution of the peaks is compared with equation (8) » end the values
of fo end fp determined by coumnting are campared with the values

obtained fram the power spectrum by using equations (%) and (5). Inas-
much as the power spectrum is so closely involved in these camparisons,
the frequency characteristics of the loeds measured in the present study
are discussed prior to the probebllity characteristics.

Power Spectrum of Buffet Loeds

The frequency content of the wing and tall loads measured in runs A
end B is shown in figure 6. These power spectra were camputed fram the
load time histories by use of the numerical techniques devised by Tukey,
as outlined in reference T. Since the spectra ere based on sample time
histories of finite length read at dlscrete time intervals
(At = 0.01 second), they represent certain necessary compromises with
regerd to frequency range, resolution, and precision. These compromises
sre discussed in detail in reference 7. The spectra, therefore, should
be consldered as estimates of the power spectral density functions of
the buffet loads rather than true power spectral densities.

The power spectras of figure 6 are essentially characteristic of the
random response of a lightly damped single~degree-of-freedom system.
The loceation of the large peak at low frequenciles in the wing-load
spectra correlates well with the frequency of first symmetric bending,
9.3 cps (teble I) for the modified airplemne (fig. 6(a)) and 11.7 cps
for the basic airplsne (fig. 6(c)), and thus reflects the chenge in fre-
‘quency characteristics associated with the added wing-tip weights. The
first essymmetric bending mode and first torsion mode also eppear in
the wing spectra but these contrlbutions ere smell. The larger low-
frequency peak in the tail s;?ectra. appears to reflect the fuselage in
a torsion, or "tail rocking," mode at 9.8 cps; identification of the
other low peeks in terms of known structural modes is less certain.

Probability Distribution of Buffet Loads

As a first step in assessing the Gaussian character of the random
loads represented by the power spectra of figure 6, the nmumber of values
from the loed time history that fall in various cless intervals are
given in teble II. Similar frequency-distribution data are given in
table III for the load ratio L/P, a simple transformation of the buffet
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load suggested by the strong linear dependence of load on penetration
beyond the buffet boundary shown in figure 4(b). The "Loads” columns
of tables II end ITI were obtained by sorting into the appropriate
classes the punched cards containing the time histories of load or of
transformed loed. Also given in the tebles is the mean value of each
frequency distribution and the stendard devistion o.

\
The probability of exceeding a given value of L or of L/P, based
on the losd frequency data of tebles II and IIT, is shown in figures 7
and 8. These figures have been prepared on normsl-probabllity paper.
Since the normal probebility distribution Pi(L) (eq. (7)) gives a

straight-line plot, use of probsbility plotting paper comstitutes one

of the simplest qualitative tests for a normal distribution. qu the
shock regime, run B, the distributions of both I; and Ly (fig. T)
have excessive occurrences of very large and very small values as cam=-
pared with a normal distribution. For the stall regime, run A, the
normal distribution is & representation of the deta which would be ade-
quate for most engineering purposes, although it is samewhat better for
the wing losds than for the tail loeds. The transformed loads for wing
and tail L/P (fig. 8) correspond even more closely to the normal distri-

bution than do the stall loads of rum A.

A standard statistical test of the significance of such differences
between an observed distribution and an assumed distribution as are

evident in figures 7 and 8 is provided by the X2 (chi-square) test.
(See, for exemple, ref. 8.) The mumerical quentities required for the
use of this test are glven at the bottom of .tebles II and III. Included

are the value of X2 and for comparison the velue x205 which is the

value of X2 at the 5-percent level of significance. In accordance

with usual practice, a calculated value of X2 1less than thet for the
5-percent level of significance msy be regarded as indicating that the
_differences between the observed distribution emd the normal distribution
are not significant. On the basis of the qualitaetive camparison of fig-
ures 7 and 8 and on the more objective basis of the chi-square test, it

is concluded that the buffet loads in the stell regime end the transformed
loads in the shock regime displsy one important characteristic of a
Gaussian random process, normality of the first probability distribution.

Probability Distribution of Peek Buffet Loads

For camparison with the peeks of & Gaussian random process, the
frequency distributions of the buffet-load pesks of runs A and B are
given in table II and the peeks of the transformed loads are given in
teble III. The frequencies of both positive and negative peaks are
tebulated. The distinction between positive and negative peaks is based




e ———— e ———

NACA TN 3733 11

not on the relative position of the zero exis, but on the usual defini-~
tions of the maximums and minimims of a contimuous function.- Thus =
Peak occurs when the first derivative of a function is zero; it is a
positive pesk when the second derivative is negative (positive curvature)
and It is a negative peak when the second derivative is positive.

The peak probsbility distributions corresponding to the peak date
of tables IT and ITI are plotted In figure 9. The abscissa in this
figure is the stendard verisble z, equal to L/o, or, in the case of
the transformed losd, -I-'O,E. The probability PP(z) 1s the probebility
that a pesk will exceed a given value of z. For the purposes of fig-
ure 9, the negative peek distributions of each load were inverted sbout
the zero axis and cambined with the corresponding positive pesk distri-
butlons to give an average or effective peak distribution. This procedure
was adopted to simplify the presentation and to increase the size of the
camparetively small samples, since there eppeared to be no special differ-
ences between the positive and negative distributions. )

For camparison of an cobserved pesk distribution with the peak distri-
bution of a Gaussian random process, a value of the ratio fo/fp is
required for use in equation (8). The lines plotted in figure 9 repre-
sent the peak probability distribution function Pp(z) (eq- (8)) for two

estimates of the ratio fO /fp. The solid lihes are for the values obtained

by counting zero crossings and peaks in the time history; the dashed lines
‘represent values obtained fram the respective power spectra of the load
by use of equations (4) and (5). The mmerical values involved are summs~
rized in teble IV. The spectrum values of fo /:f:‘;p average 0.12 smaller

than the corresponding time-history values but the effect of this differ-
ence on the shape of the peak distribution is smell, especially at the
level of the larger, more infrequent pesks. For the loads which had a
Gaussien first probability distribution (run A and the transformed loeds
of run B) the observed pesk probebility distributions appesr to be in
good sgreement with the theoretical distribution. For run B, which hed
loeds that were not normslly distributed, the pesk distribution appears
to reflect the excess of very large and very smell values. The qualita~-
tlve results of this comperison are confirmed by the chi-square test,

for vwhich the pertinent numericel data are given at the bottom of the

peak frequency columns of tables II and III. The values of X2 shown
for the peak loads of run A and the transformed pesk loads of run B are
not significant at the 5-percent level. These distributions are, there-
fore, judged to displsy another characteristic of a Gaussian random pro-
cess; that is, the probebility that a peak will exceed a given velue is
given by the peak probability distribution for a Gesussien process. The
test was not applied to the peak loads of run B in teble II in view of
the nonstationary character of the loads prior to tramsformetion and the
large departures of the peak distributions shown in figure 9.
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"In teble IV the values of f5 and of fj "obtained by use of eque-
tions (&) and (5) from the power-spectrum estimates of runs A and B are
campared with the values actually observed. The spectrum velue of the
zero-crossing frequency exceeded the observed time-history value by 1.8
t0 =0.6 cps. The estimates of peak frequency fp from the power spectra
exceeded the time-history values by amounts renging from 5.3 to 8.6 cps,
or as much as 33 percent. Values of f5 are thus obtained from the
spectrum more accurately than are the values of fp. For the purpose of
loed prediction, the frequency of the larger loads is primarily determined
by the value of f,, and the agreement between the values of fo shown
in table IV is considered satisfactory. The fact that the spectrum val-
ues of :E'P' are consistently lerger than the cbserved values msy perhaps
indicate some non-Gaussian character of the buffet process which is
appearing in the second derivative. On the other hand, inaccuracies in
the power estimates at the higher frequencies which do not greatly affect
the precision of the value of o can be magnified by differentiation
(eq. (A24)) and can thus affect the asccuracy with which the spectrum of the
second derivetive can be obtained by this method. Although the apparent
deviation from the Gaussien distribution which i1s evident in the second
derivetive is of considersble theoretical Interest end appears to werrant
further investigation, for most practical purposes buffeting can be
treated as a Gaussien randam process.

Application of Present Results to Buffet Research

Two results of the present study are of speclal interest in connec-
tion with the investigation of buffeting. These results have to do with
the Gaussian character of the loads and with the simplicity of the power’
spectral densities of the loads.

The Gaussian character of the loads is significant In view of the
wealth of statistical information availlsble about Gaussian distributions
as outlined in the section entitled "Method of Analysis" and in appen~
dix A. As applied to buffeting, such statistical properties as the
percentege of time a given load is exceeded, the number of cycles, end
the magnitude of peaks are perhaps of most interest since they have
immediate application in connection with estimation of limit loads and
fatigue effects.

The power spectral densities of the loads measured in the present
study may be considered as the resultant of a random fluctuating input
acting on an elestic system. As outlined in references 2 and 35, the
characteristics of output, input, end system may be expressed in terms
of three related frequency functions as )

0, (£) = A2(£)04(2) -
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Wwhere

¢;(£) frequency content of imput force

¢°(f) frequency content of the output or response (structural loed,
displacement, velocity, acceleration, etec.)

A2(f) square of the admittance of the system to a sinusoidal force

Buffeting is thus expressed in terms of three pertinent quantities,
each of which mey be investigated independently. Since en airplane,
vibrationwise, i8 a very camplex system, the admittance could conceivebly
be a coamplex expression involving meny degrees of freedom. It is in this
connection that the simple power spectra shown in figure 6 are significant.
Each spectrum reflects predominantly the response of a single degree of
freedam ~ in the cese of the wing, the first symmetric bending mode. As
illustrated in references 2 and 3, restriction to a single degree of
freedom cen lead to some simple analytical results. In the case of the
present unswept wing, it appears that such a restriction, as exemplified
in appendix B of reference 3, should permit the determination of first-
order effects at least. In view of the bending-torsion coupling which
is characteristic of swept wings, the admittence of swept wings is possi-
bly more camplex than that of unswept wings, and a study of the power
spectral densities of other plan forms would be of interest.

Correlation With Previous Results

Inasmuch as the present study stems from the study of peak buffet
loads reported in reference 3, and was undertaken partly to investigate
some of the assumptions made in that analysis, a camparison of some of
the present results with those of reference 3 is indicated. In the
enalysis of the peak wing buffet loads reported in reference 3, use was
made of en asymptotic expression for the pesk probebility distribution
of a Gaussian process, obtained in reference 4 (eq. 3.6-11) and given
in appendix A of the present paper as equation (A35). This expression,
for the number of positive (or negative) peaks per second NL which

exceed a value of L, is :

-12/202

Np, =~ fge (11)
Equation ( 11) epplies almost- exactly to peeks larger then 1 standard
deviation. Alternatively, the pesk value AL, which will occur only
once in & period T, is obtained by solution for AL of the equation

£oT = ALP/267 (12)
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As an estimate of f, the value used in reference 3 was the fre-

quency of first symmetrical wing bending, the dominent mode in wing
buffeting. This frequency was 11.7 cps for run B. The "probabllity
distribution of the pesk wing loads of run B, expressed as L/P, is
plotted in figure 10, in comparison with the ssymptotic expression for
these loads. The lines represent three different values of f£5. The
line marked 11.7 cps corresponds to the essumptions of reference 3,
1.8 is the value of £, counted (teble IV), end 16.4 cps is the spec-

trum velue (eq. (4+)). Bach of the lines is a fair representation of the
deta. The differences between them would be of little practical signif-
lcence in such fields es fatigue, where differences of 2 to 1 in such
quantities as fatigue life are to be expected.

For the random response of a linear single-degree~of-freedom oscil-
lator subject to a Gaussien random input with a white spectrum, the zero
crossing frequency fp is equal to the undemped natural frequency. The
difference between 9.5 cps for run A, 11.7 cps for run B, and the values
of fy glven in teble IV may be consldered as the effects of the pres-

ence of other structural modes in the buffet loeds (fig. 6) and of
departures of the color of the unknown buffet Input spectrum from white;
nonetheless, it appears from figure 10 that a single-degree~of-freedom
approximation would account at least for first-order effects.

In the present paper, use of the root-mean-square buffet loads over
short intervals, as in figures 2, 3, and 4, has resulted in efficient
use of flight-test results. Imn the enalysis of reference 3, only one
datum point was obtained for each run, since the measure of buffet loed
was AL, one-half of the largest peak-to-peek fluctuation measured in
the run. The statistical nature of the relationship between the standerd
deviation or root mean square and the pesk values mekes possible a com-
parison of the results obtained with the two measures. In reference 3
the snalysis of the wing loads in 26 runs led to the relation

Ay = (155.5 + 6.4)Pfg ‘ (13)

The slope of the lemst-squeres line through the wing data of Pigure 4(b)
is 672 + 25 pounds per unit change in penetration which, teken with a
value for q of 292 pounds per square foot, leads to

oy = 39Pﬁ (14)

The 26 meneuvers enslyzed in reference 3 averaged 4.6 seconds in
duration. If £y is teken as 14.8 cps (teble IV), equation (12) inpdi-
cates that on the aversge not more than one pesk in 4.6 seconds would
exceed the standard deviation by a factor of 2.92, or




NACA TN 3733 . 15

ATy = 2.920y
=~ 114P g (15)

The results for run B are therefore within about 30 percent of the results
obtained for the 26 runs of reference 3. The agreement would have been
closer had the values of P wuséd for the correlation of reference 3 been
the largest penetration rather than the scmetimes smaller actual value

at the time the peak loed was obtained, but the results from the two
different meassures of buffet intensity can be considered in good agree-
ment. Whereas the standard deviation makes more efficlent use of the
dete and utilizes a measure of greater stebillity, more computational
effort is required to obtain it than the simpler peak-to-peak values.
However, either technique could be used, the standard deviation being

the preferred measure when flight-test time must be conserved.

CONCIUDING REMARKS

Same statistical properties of the buffet loads measured on the wing
end tall of a fighter airplane have been analyzed in an abttempt to deter-
mine whether buffeting can be considered a Geussian random process.

For a representative stall maneuver it appears thet the wing buffeting
is essentially a Gaussian rendom process. The loads are normelly distri-
buted, and the probebility that & load peak will exceed & given level is
in agreement with the theoretical results obtained by Rice in 'Mathemetical
Analysis of Randam Noise." There is evidence that the tail buffet loeds
are not so normelly distributed as the wing loads, end there is also scme
evidence of correlation between angle of attack and tail buffet intensity.

For a representative pull-up into buffeting in the shock regime, the
buffet Intensity eppears to vary linearly with penetration beyond the
buffet boundary. The loeds under meneuvering conditions are therefore
not stationery and ere thus non-Gaussian, but by means of a simple linear
transformation the buffet loads in maneuvering flight cen be treated as
a Gaussian process.

The power spectrum of the wing root shear indicates that buffet
shear loads ere primerily assoclated with response in the first symmetri-
cal bending mode. Although other structurel modes are present, their
contribution is amall, and the spectrum is essentially characteristic of
the response of a lightly damped single-degree-of-freedom system to a
random disturbance. The power spectrum of the tell root shear indicates
that the tail loads are primarily assoclated with the fuselage in a tor-
sion, or "tail-rocking," mode.
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In studies of the relationship between buffeting intensity and air-
Plene operating conditions, numerical filtering techniques have been
found effective for separating the buffet loads from the low-frequency
load. components assoclated with the maneuvering of the airplane. A use-
ful measure of buffet intensity was the root-mean-square buffet shear
averaged over s l/2-second interval. This measure was found to be suffi-
ciently stable statistically, yet did not encompass so long an interval
that the effects of changes in flight condition were obscured.

Langley Aeronsutical Leboratory,
National Advisory Committee for Aeronautics,

Langley Field, Va., May 10, 1956.
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APPENDIX A
SOME CHARACTERISTICS OF A GAUSSIAN RANDOM PROCESS

The nature of some of the concepts aveilable for the description
of random processes and the simplificetions which result when the pro-
cess 1s Gaussian are discussed in this eppendix. Emphasis is glven to
some of the practical applications of ltems which are developed 1n more
detail in references k4, 5, 6‘, and 7. The discussion is restricted to
what is termed a "stationary' random process. For random time series
such as are dealt with in the present paper, the restriction to stationary
means that while the quantity of interest (for example, loed) varies with
time, the value of any stetistical measure of the quentity (for exsmple,
its mean squere) does not depend upon the time for which the measure is
determined. Thus time does not enter directly, but 1s used only as a
means of specifying the duration of a tlime interval.

Probability Distributions

A stationary random function of time y(t) mey be characterized
by a series of related probability functions W;, Wo , . . . W, where

Wi(y) dy is the probebility of finding y between y end y + dy;

Wa(yl,ya,'r) dyl dya is the Joint probablility of finding a palr of velues
of y in the ranges v to v+ dyl and Yo to Yo + dyz, which
are & time interval T sapart from each other;

W3(yl, Yos y5,'rl,72) dyy dy, dy3 is the joint probability of finding a
triple of values of y in the ranges 1 to vy, + dyl, Yo to
Vo + dy2, and 3 to Y3 + dyB, where dyl and dy, are the time
interval T, apart and dy, and dy3 are the time interval T, apart.

The W, probability distributions represent a complete statistical

description of the process, eech distribution of higher order describing
it in greater detail. The function Wy(y) is termed the first probebil-

ity density; it fulfllls the requirements that & probebility function is
never negative, and that

[ ww a=a (A1)
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Tt also serves to define the probability fumction P(y) » which is the
probebility that a given value of y will be exceeded; that is

(y) = f ") ay (a2)
¥y

From Wl(y) the average value of y cean also be forund.:
(-]
7-[ yu@ e (83)
-00

which (for a stationary random process) is the seme as the time average

1 T
¥=_lin 55 y(t) at.
T—>w -7

A measure of the spresd. of the values of y(t) around the aversge
value ¥ is the standard deviation o, which is defined as the square

root of the sversge value of (y - 72

SV
o= Ey - i)z:ll 2 (a4)

The value of ¢ msy also be obtained fram Wi(y) .es

2= -92ne e (85)

For meny purposes it is convenient to express y in terms of its
fluctuations about the average value, normalized by the stenderd devia-
tion. Such a dimensionless expression is denoted by the standard vari-
gble 2z, where

z=Y"y (As)

When changing variebles from y to 2z, a dual change of scale is
involved with probability densities, since the fundemental requirement
of & probebility distribution must be observed; that is,

f_: Wy (y) dy = f_: Wy(z) @z = 1 (a7)
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end. hence
wy(z) = Wi(y) & = o W) (48)

From the second probability distribution, W, is obtained the mean

value of the product y(‘b) y(t+1') wvhere T 1is the difference in time
between the values of y. This mean value

Y150 = j] VAR Wa(yl:yg:'r) dy]_ dy2 (a9)

which is a function of T, is the ssme (for a stationary process) as the
time average

T

y(t) y(ter) = Lim & [ y(t) y(tar) as (a10)
T —>e -T

It glves a measure of the correlation.between velunes of y separated
by & time interval T and is termed the correlation function R(T) of
the random process. From equetion (AlO) when T-=0 it is evident that

R(0) = y2 (A11)
Por conformity with stendard statistical practice where perfect corre-

lation is denoted by a value of 1, the correlation function mey be
normalized and expressed as

() < ®) - Tl - 7]
[¥(+) - 7]

(A12)

Power Spectrum

The information contained in the Wp probebility distribution
functions is also contained in a set of distribution functions which
describe the frequency content of the time variations of the random
function y(t). The simplest of these frequency distribution functions
is generally called the power spectrum or power spectrel density end in
this paper is denoted by the symbol o(f). Under suiteble limitations
(see, for example, ref. 6, sec. 6.7), ®(f) can be defined in terms of
a Fourier transform of the ranmdom time function y(t), but frequently
of more practicael interest is the relationship with the correlation
function R(T) expressed in the Fourier cosine transform peir
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o(f) =k f R(T) cos 2nfr dr (A13)
0

R(T) =j:° o(f) cos 2nfr af (A1)

Equation (Al3) is the basis for most mmerical methods of obteining
o®(£). From equstion (Al4) when T =0 a relation follows between power

spectral density and the mean square:
fo o(2) az = R(0) = ¥2 (a15)

Thus the power spectrum msy be regarded as a frequency amalysis of the
meen square velue of the rendam time function. The function &(f) when
applied to a random process is regarded es a continuous function, in
distinction to, say, Fourier coefficients which convey similar informa-
tion ebout the amplitudes of harmonic' functions. In the event that a
time function contains nonrendom elements such as a mean level (in elec-
trical terms, a directecurrent component) or periodic components such
as Ay sin (2xfit - o), the spectrum will contain discontinucus pesks.

This information can, however, be expressed in contimuous form through
the convention of the Dirasc delta function &(f-fyk), defined as

8(£-fx) = O (£ # £x)
. > (A16)
f B(f-f) af = 1
Aiso, &(f) = 5(-f) and hence
f: 8(f) af = 3 (a17)

With this convention, for a time fumction

y(t) =5 + A sin(2nfyt - o) (A18)
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‘the correlation function is

2
A .
- R(T) = 5= + %~ cos 2ufyT (219)
and the power spectrum is
) Ak2
o(f) = 27°5(¢) + —— B(2-Tx) (a20)

These relationships are frequently of use in analyzing the characteristics
of experimentally derived spectra.

The Geaussiay. Random Process

A stationary random process is termed Gsussian provided all menbers
of the set of multidimensional probebility distributions W, are Gaussien

This requirement means that the first probebility distribution Wl(y)
may be expressed functionslly as

W(y) = ﬂlﬁ e'(y'57)2/ 20 (A21)

This equetion represents a one-dimensional Gaussian distribution, the
so-called normal distribution of statistics. The second probability
distribution Wa(yl,yz,'r) is & two-dimensional Gaussian distribution

which involves the normalized correlation function p(T):

2. 2
_ ¥y W -2y,

Wo(¥1s¥0sT) = Fi———v—_p—a e 20%(1-07) (A22)

and in general the W, probebility distribution is an n-dimensional
Geussian distribution.

The definition of a Geussian random process in terms of such a set
of n-dimensional Gaussian distributions, although camplete, is hardly a
definition of practical utility. Its importence stems from the fact that
for the Geussian rendom process all of the distributions W, will depend

only on 0 eand p(T) » two quantities which in turn are derived from the
power spectrum, as in equations (A13) and (A15). Therefore, the spectral
density 6(f) may, with equation (A21), be regarded as a basic descrip-
tion of a Gaussian rendom process. Other characteristics of \& Gesussian
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process follow fram the relationship between the power spectrum amnd
the W, Gaussian probebility distributions. Of considerable practical

Interest in this connection are the relationships between the power

spectrum, the derivatives of y(t), the frequency of zerd crossings, and
the frequency of occurrence of pesks in the time history.

Derivatives of a Gaussien random process.- A consequence of the
Gaussian cheracter of e random time function y(t) is the relationships
between the derivaetives of y(t) and the power spectral demsity &(f):

; [ 2 = g2
(e j; (2x£)?0(2) af = a5 (423)
and
5 = [ (exe)o(e) at = o ()
(6]

It can also be shown that the correlation between y(t) and its
derivatives is

y(t)y(%) = F(6)57(t)
(A25)

TR = ()2

For same anelytic frequency functions G(f) which are satisfactory
representations of certain physical processes over the frequency range

of usual interest, equations such as (A23) or (A24) would have no mesning,
since the integrals would not converge. However, it eppears that for
physical systems peresitic effects will alweys be present at sufficiently
high frequencies, and o(f) will elweys approach zero rapidly enough so
that the integrals will converge. .

Peak values of a Gaussian process.- In part IIL of reference 4 a
number of resulis are obtained on the distribution of the zeros, of the
meximms or peaks, and of the envelope of a Gaussian time function. The

relations for the number of zeros and for the number and probebility
distribution of the peaks asre of special interest, beceuse they are

. eaglly determined from a time~history record and from the power spectrum

and because they are quentities which enter directly into the study of
fatigue. The number of times per second that the zero axis 1s crossed
with positive (or negetive) siope is, on the average,
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(A26)

E

- L

and. the total number of positive (or negative) pesks is

fp = '21;; % (a27)

Equations (A26) and (A27), together with equetions (A15), (A23), and
(A24), lead to equations zll-) and (5) of the present study. The ratio
fo/fp is the negative of the coefficient of correlation between ¥y
and §. The probability Wp(y) dy that a positive peek will fall

between y and y + dy is given by a peak probebility density function
which, in terms of the standerd varisble =z, is

k, -#2f2x.2 g, _ 2
%(z):-v%e / 1 +%zez/2(l-_l?nkz—£) (A28)
where
£0\2
ky = 1-(-%) (829)
_ 5
k2 = 78 (a30)

and PN(-Z—) is the noma.l.probability that a value z/k2 will be

X,

exceeded; that is,

Z ~z2/2

PN(E) = % y:k26 e dz (A31)

Equétion (A28) is essentially equation (3.6~5) of reference L
expressed in the notation of the present paper. The frequency ratio
fo/fp 1s the peremeter which determines the shape of Wp(z); equa~-

tion (A28) is plotted in figure 5(b) for several values of the ratio
fo /fp. For the limit of :E‘o/fp = 0, the distribution reduces to the

normel distribution; for the upper limit of £y /fp = 1, the distribution
reduces to the Reyleigh distribution.
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Equation (A28) has been integrated to obtain the probability Pp(y)

that, of all the positive (or negative) peaks of a Gesussian random pro-
cess, a peak chosen at randam will exceed a glven value of y = zo. The
resulting expression

-}

Po(y) = fy el e

_ PN(k—i) . % e-.z2/.2E_ _ PN(']‘ZE):I (A32)

is plotted in figure 5(a) 3 it is a function of normel probebility distrib-
utions and the ratio fo/f .

The actual number of positive peaks per second which would exceed
a given value of y = zo 1is, on the average, N,, where

N, = £, Pp(z) - (A33)

As pointed out in reference 4, an asymptotic expression for the
peak probability density, equation (A28), is

Wp(z) = :Eoze"zzl 2 (a3k4)

an expression which is quite accurate for z > 1 or y > o. The corre~
sponding expression for the number of positive peaks per second which
exceed a given value of z is, fram equations (A32) and (A33),

2/

Nz =~ £ge (a35)

This is a convenient expression which plots as a straight line on semi-
logarithmic psper when z2 is used ss the sbscisse.
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APPENDIX B
NUMERTCAL FILTERING

The load time histories recorded. in the present investigation cen
be considered to be composed of a maneuver camponent and a buffet com-
ponent. The frequency content of the meneuver wes concentrated in the -
vieinity of the frequency of the short-period pitching motion (ebout
1 cps) while the principal camponents of the buffeting were of the order
of 10 to 12 cps. For separation of the buffet component, some method of
discriminstion between components sbove and below sbout 3 to 4 cps was
desired. Estimetion of the meneuver camponent by mesns of a menuslly
faired mean line snd messurement of the buffet component relative to this
line was tedious and uncertain. Estimetion of the maneuver camponent by
calculation of the running mesn proved to be a simple numerical procedure,
but use of the running mean is equivalent to use of a low-pass numerical
filter with a long tail and systematic phase shifts which were undesirsble.
A special high-pass numerical filter was therefore devised which is suit-
sble for use with punched-card equipment, hes no phase shifts, and has a
sherply defined cutoff in the desired frequency range. The filter was,
in effect, based on the properties of a particular class of low-pass,
high-pess, and band-pass numerical filters. ©Since the approach used can
be extended to the development of other filters with a wide range of
characteristics, and since it differs in same respects fram the method
used in reference 9, it is described in some detail.

Frequency Characteristics of Numerical Dsate

For application of numerical procedures, a contimuous fumetion of
time y(t) is ordinerily reduced to discrete time-history form y; by

sampling at the uniform time intervel At. This new function y; 1is
thus defined at the particuler values of

t=1At (L1=0,1,2, ...) (BL)

but is undefined at intermediste values. There is no loss of Information
in this reduction if y(t) conteins no components with frequencies
greater then a frequency fp, termed the Nyquist frequency or folding
frequency, where

_ 1
F =358 (82)
The folding frequency hes the property that in any frequency representa-
tion of y(t), determined from the values of ¥j, components of
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frequency £, (afF t f), (ll-fF F - f), and so forth, cannot be distinguished.
Thus components of such frequencies greater than fF appear in the fre~
quency representation at the frequency f in the remge 0 S f S fp, end
the whole range of frequencies in y(t) has been folded into the range

0 +to fF. This folding property follows from the relations
sin 2n(2fp t £)t = sin(2ni £ 2¢ft) = fsin 2nft
(1=0,1,2,...)
Binamigl~Coefficient Filters

The binomiel coefficients (}) as displayed in the srray

k 0 1 2 3 4 5 6 T 8 .. =n-l1l n

n

1 1 1

2 1 2 1.

3 1 3 3 1

) 1 & 6 % 1

5 1 5 10 10 5 1

6 1 6 15 20 15 6 1

7 1 7 2. 3 35 21 T 1

8 1 8 28 56 T0 56 28 8 1

n 1 n”.n(n-l)(n-2)...(n-k+l) n 1

k(k - 1)(k - 2)...(3)(2)(1)

and their sums 2% form the basis for e number of integrating and smoothing
formulas. The smoothing action on mmerical date is akin to the action
of filters on electrical signals, as may be seen, for exemple, by consid-

ering the action of the formulas based on (]2:)

-
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7(8) = [y(s-a6) + 25(8) + y{teat)] (83)

when y(t) is a sine wave of frequency £, that is

y(t) = sin 2nft

or, if t =1 At,
£l
e

Application of the reletion sin(e * b) =sin a cos b £ cos a sin b
to equation (B3) gives

F(t) = L* cosga:n:f A)oin orpt

or

l—l
+
[¢]
[o]
]
|R

= 2z £
vy (cos 2 fF)yi

Thus y(t) (or ¥i) is a sinusoid of the seme frequency as y(t) (or

¥i) but the amplitude has been modified by the term cos? 12‘:- fL, which

thus represents the filter factor of the (]2‘) binomial-coefficient filter.

For data-processing purposes, the operation represented by equa-
tion (B3) is more conveniently expressed in metrix form as

Yi-1
- 2 1 {n
i+l

or, in general, for the nth-order binomial coefficients ’

T

end the filter factor of the assoclated filter is easily shown to be

Y, (£) = cos® ’2—‘% (B5)
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Application of a second-order filter to obtain ¥;, followed by & repeti-
tion of this action on §J; to glve 'ffi, is equivalent to a single appli=-

cation of a fourth-order filter, as msy be seen fram the matrix repre-
sentation of this double filtering process:

. Ti1
Fi=t 2 135
2 Vi1

Tyo0)
=éllr|_121_]12100 Yio1
012 10 13’1 f
0 0 1L 2 1{{|Y1e1
;yi+2j

=;1E|_1 L} 6 & 1] {yi}

Successive operations of this type are commutative, use of an nth-order
filter followed by an mth-order filter being equivalent to use of an
(n#m)-order filter, and the filter factors are also commtative; that is,

i £ n-m
Y(tm) () = () (£) = (cos z 'fE) (86)

The binamial filters are all low-pass filters, the filter factor
being unity at £ = O and zero at the folding frequency. The filters
determined by the coefficients of even order have the speclal properties
that they are nonnegative and have no phase shifts; thus, the time

reletionships of components of different frequencles are preserved. The
low-pass-filter characteristic Y,(f) is plotted in figure 11(a) for

the range 0 S f-i £ 1 for several even values of n. The higher the
r

order of the fllter, the sharper the low-frequency cutoff. As measured
by the usual criterion of band width at the half-power point, Y(£) = 0.707,
the second-order and 28th-order filters would. have band widths of 0.36fF

and 0.10fp, respectively.

Modified Binomial Filters

By a simple operation on the coefficients, each even-order binamial
Pilter can be related to a high-pass filter which has a filter factor
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of Oat £ =0 and 1 at the folding frequency. The time history %Zj

computed with the hlgh-pass numerical filter is related to the time history
¥; Dy the relation

Zi =¥y - T4 (B7)

that is, the double operation - application of a low-pass filter followed
by substraction from the original time history - is equivalent to a single
operetion with the related high-pass filter.

Since, from equations (BYt) and (BT),

[ Yie(n/2) ‘

Zy =¥ - ;lrll_(i)_]ﬁ 3.’1 1

| Vi+(n/2}]

the coefficients for finding Z; in one operation are contained in the
relation

ry:i.-(n/2).

WE) D) e ) R

L Y1+(n/2)J

) (B8)

That is, the coefficients for the nth-order high-pass filter are the
negatives of the coefficients for the low-pass filter, except for the

central coefficient k = %, which is equal to 2" minus the central

binomiel coefficient (7). Thus the sum of all the coefficients of the
high-pass filter is zero. In the followlng errays the left-hand set
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represents the low-pass filters and the right-hand set the related high-
pass filters. The normalizing factor for each set of coefficients is
the sum of the binomial coefficients, 2B.

n 22 Iow Pass High Pess

2 b 1 2 1 -1 2 -1

L 16 1 4 6 4 1 ~1 <4 10 &4 -1
6&'1615201561-1-6-15#4-15-6-1

The high-pass-filter charecteristic Z,(f)_  for the nth-order filter is

1 - Yu(£)

Zn(£)

1 - cos®

(B9)

X
2

]

which, for n = 2, is gin® g% The filter characteristic Z,(f) is
plotted in figure 11(b) for comperison with Y,(f) (fig. 11(a)). As

the order :I.ncreases (and thus the length of time over which the filter
"remenbers"” increeses) 5 the suppression of high-frequency components by
the low-pess filter becomes more effective, .and the fllter becomes
sherper; similarly, the pass band of the high-psss filter becomes wider.

Operations with low- and high-pass filters are commutative, and give
bend-pass filters. For example, combination of the second-order low-pess

filter 1%'_1 2 1| end the high-pass operstor |[-1 2 -1| is equivalent

to the filter 1%l_--l 0 2 0 -1, which has a characteristic

F(£)

4, (£)2o(£)

gin2 ﬁ; (B10)

Similerly, the operator £|-1 O 1] (besed on the first-order binomial
coefficients) has a filter amplitude characteristic of

F(£) = sin % (B11)
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The band-pass filters can also be regearded as modified binomial
filters for which the folding frequency hes been redefined. For example,

the operation ﬁ-_—l_—l 0 20 -1_| can be regerded as the high-pess f£il-

ter of order 2 operating on the points Yi.0» Vi, 804 ¥i.o5 thus, in

effect, the time interval At between date points is doubled, and the _

.
F_ 1
effective folding frequency is the value > I A Thus if

l%[_--1 2 -1| is represented by & filter factor

£

Zo(£) = sin®
IF

VIES

the operator ,1—'|_-1 0 20 -l_l represents the filter factor

F(£) = sin? z -ffi-é (B12)
That is,
F(£) = sin? %f; (B13)
F

vwhich is the same as equation (B10O).

Separation of Maneuvering end Buffet Losds

For the purposes of the present study a palir of low- and high-pass
filters wes developed. These filters, like the 28th-order binomisl fil-
ters, operate on 29 successive values of the measured time history i
but differ from the binomial-type filters in both sharpness of discrimina-
tion at low frequencies and in suitability for routine computations with
punched~card equipment. The filters are more eesily described in terms
of the low-pass member of the pair, which was constructed from the low-pass

fourth~order binomial operator
L+ 6 % 1 (B1ka)

and the two related modified binomial operators with band-pass
characteristics

=l ok o060k o0 1 (B14p)
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-ll-gl}ooouooosooouooou (Bke)

These operators, respectively, have the filter characteristics

Y, (£) = cogt -’21%

L

cos

Y), (2£)

P
R

COSh

Y, (4£)

OB
ol

as shown in figure 12(a). The three operators (Billt) can be used in
succession with three passes of the simpler punched-card calculators,
or with more elsborate equipment the filtering cen be accanplished with
the combined symmetrical operator which acts on 29 adjacent points:

[L & 10 20 35 56 84 120 161 204 246 284 315 336 34k 336 . . . 1]
(B15)

1
4096

In either caese, the filter factor F(f) is given by the product of the
filter factors of the three operators as

- fcos % £ cos L 2£ oo X EV
F(£) (cos > o cos Z = cos 2 fF)

which is illustrated in figure 12(b). As measured by the criterion of
band width at the half-power point, F(f) = 0.707, this filter has a
band width of 0.0575fp, or as used in the present studies, where

fF = 50 cps, the band width is 2.9 cps. It is thus sharper then the

28th-order binomial filter (fig. 12(a)) which operates on the same num-

ber of points. Four-tenths of one percent of the total tremnsmission

lies in three minor lobes located between the zeros at .ffl_ = 0.25, 0.50,
F

0.75, end 1.00, and shown to sn expanded scale in figure 12(b), but these
lobes are all smaller than 0.0028 in emplitude.

In order to obtain the buffet loed, the time-history values of the
maneuver load obtalned through use of the operator (Bl5) were substracted
from the measured losd time history. It could have been obtained directly
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by use of the high-pass filter equivalent to the operator (Bl5) but,
since the central coefficient of the filter would have then contained
not three but four digits (4,096 - 34k = 3,752), the buffet load was
obtained in two steps in order to preserve the computational efficiency
associated with the three-digit coefficients of (B15).
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TABLE I.~ GROUND VIBRATION FREQUENCY OF AIRPIANE STRUCTURAL MODES

Frequency, cps, for -

Bagic Modified
airplane airplane

Wing modes:

First symmetric bending . . . . . . « . . . . . . 11.7 9.3
First asymmetric bending . . « « < ¢ ¢ ¢« ¢« « . . 22.3 18.1
First torsion « ¢« ¢« ¢ ¢« ¢ « ¢ ¢« o o« « o o« o « « « 38.0 3.5
Second symmetric bending . . « + ¢« ¢ ¢ ¢ o o o ——— 52.0

Horlzontal stabilizer modes:
Pirst symmetric bending . . « ¢ ¢ ¢« ¢ ¢ ¢ ¢ & o« &

25 2
First asymmetric bending . . . . . e e e % e e . 36.0 3
First torsion . . «. . « . « ¢ ¢ ¢ ¢ ¢ v o e o TO T

Fuselage modes: )
Torsion . ¢« ¢ ¢ ¢ ¢ 2 o o o e o o o o o s o o = o

9
Side bending . « « ¢ o o o o o o o s 0 e s . . 12,
Vertical bending . « « « « « « o « ¢ o o o « « - 1

U ®
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TARIE IT.- FREQUENCY DISTRIBUTION OF LOADS AND IOAD FEAXS IN BUFFETING

NACA TN 3733
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TABLE III.- FREQUENCY DISTRIBUTION OF TRANSFORMED
IOADS AND IOAD PEAKS FOR RUN B
Frequency for -
Range of L/P, Wing Tail
1b . ;
Positive | Negative Positive | Negative
Loads peaks peaks Loads peeaks peaks
-2,000 to -1,800 1 1
-1,800 to -1,600 35 5
-1,600 to 1,400 | 3 2
-1,400 to -1,200 5 2 2 2
-1,200 to -1,000 | 10 6 4 b
-1,000 to =800 | 11 8 10 6.
-800 to =600 | 2L 8 22 15
-600 to -40O | 23 13 30 1 8
400 to -200 | 38 2 T ho- )3 16
-200 to o| 36 6 3 40 3 9
Oto 200| %o 6 2 L7 T 6
200 to Yoo | 41 8 2 50 i) 5
400 to 600.| 27 6 2 35 23 1
600 to 800 | 21 12 21 T 1
800 to 1,000 | 20 13 T 5
1,000 to 1,200 | 10 6 6 5
1,200 to 1,400 5 3 2 1
1,400 to 1,600 3 3 1 1
1,600 to 1,800 1 1 0 0
1,800 to 2,000 0 0 1 1
2,000 to 2,200 1 1
N 320 67 67 320 3 T2
Mean 25 25
g 653 512
N 19.8 h.7 4.8 5.5
2 22.4 11.1 .1 11.1
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TABLE IV.- VAIUES OF FREQUENCY PARAMETERS- OBTAINED

FROM POWER SPECTRA AND FROM TIME HISTORTES

Wing Tail
Source - o . .
02 P2 0Os ps
cps cps fO/ fp cps cps fO/ fp
Run A:
Spectrum 18.1| 34.8 | 0.52 15.5] 25.4 |0.61
Tme history 16.3 | 26. .62 15.7{20.0| .78
Run B:
Spectrum 6.4 |27.3 | .60 15.5|28.1L} .55
Time history 14.8121.8| .68 16.1|22.8| .70
Run B (transformed):
Time history m.8|21.0| .77 16.1|22.7| .TL
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intensity.
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Probability of excaeding, P(L)
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Probability of exceeding, P(L/P)
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Figure 8.- Probsbility that a value of transformed load L/P will be
exceeded.
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Filter factor, Yp(f)
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FPigure 1l.- Fllter factor of binomlial filter of order n and associated high~pass filter.
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